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Likelihoods on Large Families w/ Dense SNPs

Statistical Problems:

• Ho : θ = ±∞
• L(δ) 6= L(θ)

• iid no longer applies.

• Confidence Intervals (CIs)? Validity? Efficient?

• How do we know that the chosen SNPs are the right SNPs?



Likelihoods on Large Families w/ Dense SNPs

Computational Problems:

• A large latent space

• Sparse SNP panels increase error!

• Likelihoods involving dense SNPs are intractable



CIs for θ with Dense SNPs: Notation

Let G denote the obs’d dense SNP genotype data.

Ideally, we want to base inference on θ̂(G), but this likelihood is
intractable. Why? Because for certain pairs of SNPs there is
linkage disequilibrium (LD), which means that

Pr(Ai − Bj) 6= Pr(Ai )Pr(Bj) (1)

for any allele A and B of loci i and j , resp.

Note that LE (linkage equilibrium) implies equality in (1), and that
likelihoods for sparse subsamples (denoted M) are tractable
provided that the SNPs are all in LE.

Thus, M ≡M(G,S), where S denotes a sparse SNP panel.



CIs for θ with Dense SNPs: The Standard Estimator

Most researchers choose an S that they think is best and compute
θ̂(G | S). But no one knows what S is best, and so everyone uses a
different S (either by choice or by force), which means that the
standard estimator θ̂(G,S) is, in fact, random in both G and S.

Furthermore, although dense SNP panels change every year, and
from platform to platform, etc., efficient estimators of θ are
invariant to dense SNP panels because two different dense SNP
panels will provide nearly identically information about θ.



CIs for θ with Dense SNPs: The Stewart-Peljto Estimator

In ’10, we proposed θ̃ ≡ Eθ̂ | G, where E(·) is taken wrt Pr(S | G).

In practice however, we estimate θ̃ by 1
k

∑
θ̂(G,Sj), from

S1, . . . ,Sk realizations of S ∼ Pr(S | G).

Note that (if you can compute it),

Var(θ̃) = Var [E θ̂ | G ]

≤ Var [E θ̂ | G ] + EVar(θ̂ | G)

= Var [θ̂(G,S)]



CIs for θ with Dense SNPs: Variance Estimators

For a large number of small families a nonparametric bootstrap
approach is quite effective.

For a small number of large families

(1) nonparametric bootstrap is no longer applicable,
(2) a minus 1-LOD unit approach is approximate, at best
(3) simulation of G conditional on obs’d trait data is

computationally infeasible due to LD.

Also note that the Var(θ̂) ≈ E[Var(θ̂ | S]. Eq. (1)



A Simulation Study: Design

To quantify the gains in precision of θ̃ for large families,

• We generated dense SNP cosegregation data on 3-generation
families for dominant (DOM) and recessive (REC) traits with
incomplete penetrance, positioned in the middle of 132
haplotype-blocks (avg spacing between blocks is 0.5 cMs; avg
spacing between SNPs is 0.25 cMs; each block has 3 SNPs).

• For DOM: disease allele frequency of 1%, a phenocopy rate of
1%, and a penetrance of 20%.

• For REC: the corresponding parameters were 10%, 1%, and
50%, respectively; each replicate contained seven families.



A Simulation Study: Design

5–DOM pedigrees per replicate 7–REC pedigrees per replicate



A Simulation Study: Design

LD structure of the 132 haplotype blocks:



A Simulation Study: Results

The conditional variance formula holds: V θ̂ = V θ̃ + EV θ̂ | G

Trait Vθ̂ Vθ̃ AMCE
DOM 47.27 (46.39) 38.43 8.84
REC 64.25 (63.13) 53.01 11.24

• CI lengths are reduced by 10%.

• V θ̂ in parentheses is computed by EV θ̂ | S.



Approximate Importance Sampling (AIS)

Recall that the average Monte Carlo error (AMCE) is:

EV θ̂ | G =
∑

[V θ̂ | G] Pr(G)

=
∑

[V θ̂ | G]
Pr∗(G)

Pr(G)
Pr(G)

≈
∑

[V θ̂ | G]
Pr∗(M′)

Pr(M′)
Pr(G),

where M′ ≡M(G,S′) and S′ minimizes V θ̂ | S.

For REC: AMCE = 11.24 (cond. sim), and AMCE = 11.78 (AIS).



Incorporating 1000 Genomes

Currently, we use the EM algorithm to estimate the dependence
structure of G, which facilitates the rapid and efficient subsampling
of M. But the accuracy of this estimation could be greatly
improved by the inclusion of ethnically matched data from 1000
Genomes data.

Then, the G simulation with LD but without cosegregation could
be improve by coalescent-based programs like FastPhase, or
Markov chain-type programs like Haplodrop.

Futhermore, with AIS and Eq. (1), all condition simulations can
happen under LE, and all LD simulations can be unconditional.



Conclusions

1. In principle, accurate, narrow CIs for a small number of large
families is, now a reality.

2. By shrinking the candidate gene region, sequencing costs will
decrease, and the power to detect associations underneath
cosegregation peaks will increase.
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For those who are interested in our software:

William.Stewart@nationwidechildrens.org

Thank You!

http://u.osu.edu/stewart.1212/





The Kong & Cox Likelihood (’97) at location j

log L(δ) = c(D) +
∑
i

log[1 + δ (f (Di )− µi )/σi ],

where f (Di ) = E(Si | Di ,Ho : δ = 0) and i = 1, 2, ..., n for n
independent families in the data set.

Now define Z j ≡ sgn(δ̂)
√

2 [log L(δ̂)− log L(0)] for j = 1, 2, ...,m
for m markers in a genome-wide cosegregation scan.

Z j → N(0, 1) as n→∞


